Scalable Matrix-valued Kernel Learning and High-dimensional Nonlinear Causal Inference

نویسندگان

  • Vikas Sindhwani
  • Aurelie C. Lozano
  • Ha Quang Minh
چکیده

We propose a general matrix-valued multiple kernel learning framework for highdimensional nonlinear multivariate regression problems. This framework allows a broad class of mixed norm regularizers, including those that induce sparsity, to be imposed on a dictionary of vector-valued Reproducing Kernel Hilbert Spaces [19]. We develop a highly scalable and eigendecomposition-free Block coordinate descent procedure that orchestrates two inexact solvers: a Conjugate Gradient (CG) based Sylvester equation solver for solving vector-valued Regularized Least Squares (RLS) problems, and a specialized Sparse approximate SDP solver [15] for learning output kernels. As an application of our framework, we show how high-dimensional causal inference tasks can be naturally cast as sparse function estimation problems within our framework, leading to novel nonlinear extensions of Grouped Graphical Granger Causality techniques. The algorithmic developments and extensive empirical studies are complemented by theoretical analyses in terms of Rademacher generalization bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality

We propose a general matrix-valued multiple kernel learning framework for highdimensional nonlinear multivariate regression problems. This framework allows a broad class of mixed norm regularizers, including those that induce sparsity, to be imposed on a dictionary of vector-valued Reproducing Kernel Hilbert Spaces. We develop a highly scalable and eigendecompositionfree algorithm that orchestr...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Thoughts on Massively Scalable Gaussian Processes

We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning an...

متن کامل

Learning Equivariant Functions with Matrix Valued Kernels

This paper presents a new class of matrix valued kernels that are ideally suited to learn vector valued equivariant functions. Matrix valued kernels are a natural generalization of the common notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels. We work out several properties of equivariant kernels, we give an interpretation of their behavior and...

متن کامل

Stability of Multi-Task Kernel Regression Algorithms

We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning problems with nonscalar outputs like multi-task learning and structured output prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1210.4792  شماره 

صفحات  -

تاریخ انتشار 2012